Exercise 76

Suppose the curve $y=x^{4}+a x^{3}+b x^{2}+c x+d$ has a tangent line when $x=0$ with equation $y=2 x+1$ and a tangent line when $x=1$ with equation $y=2-3 x$. Find the values of a, b, c, and d.

Solution

Take the derivative of the equation for the curve.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x^{4}+a x^{3}+b x^{2}+c x+d\right) \\
& =\frac{d}{d x}\left(x^{4}\right)+\frac{d}{d x}\left(a x^{3}\right)+\frac{d}{d x}\left(b x^{2}\right)+\frac{d}{d x}(c x)+\frac{d}{d x}(d) \\
& =\frac{d}{d x}\left(x^{4}\right)+a \frac{d}{d x}\left(x^{3}\right)+b \frac{d}{d x}\left(x^{2}\right)+c \frac{d}{d x}(x)+\frac{d}{d x}(d) \\
& =\left(4 x^{3}\right)+a\left(3 x^{2}\right)+b(2 x)+c(1)+(0) \\
& =4 x^{3}+3 a x^{2}+2 b x+c
\end{aligned}
$$

Use the fact that at $x=0$, the slope of the curve is 2 .

$$
\begin{equation*}
y^{\prime}(0)=c=2 \tag{1}
\end{equation*}
$$

Use the fact that at $x=1$, the slope of the curve is -3 .

$$
\begin{equation*}
y^{\prime}(1)=4+3 a+2 b+c=-3 \tag{2}
\end{equation*}
$$

Also, use the fact that at $x=0, y=1$.

$$
\begin{equation*}
y(0)=(0)^{4}+a(0)^{3}+b(0)^{2}+c(0)+d=d=1 \tag{3}
\end{equation*}
$$

Also, use the fact that at $x=1, y=-1$.

$$
\begin{equation*}
y(1)=(1)^{4}+a(1)^{3}+b(1)^{2}+c(1)+d=1+a+b+c+d=-1 \tag{4}
\end{equation*}
$$

Solve equations (1), (2), (3), and (4) for a, b, c, and d.

$$
a=1 \quad b=-6 \quad c=2 \quad d=1
$$

Therefore, the curve is

$$
y=x^{4}+x^{3}-6 x^{2}+2 x+1
$$

Below is a graph of the curve with the two tangent lines at $x=0$ and $x=1$.

